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Abstract
In relation to Bringuier’s paper (2003 Eur. J. Phys. 24 21), it is pointed out
that one cannot always neglect relativistic effects at low velocities. Also, some
flaws are identified in his analysis of fields and charges in the case of a circular
loop rotating in a constant magnetic field.

A recent analysis of electrostatic charges in v×B fields presented by Bringuier (2003) contains
a starting assumption which perhaps deserves a short comment. According to Bringuier, one
need not invoke special relativity when discussing a first-order theory of conducting non-
magnetic media that move in magnetic fields. The statement is, of course, perfectly sound as
regards the polarization in a moving non-magnetic medium which is given by

P = ε0(εr − 1)(E + v × B). (1)

It seems, however, that without special relativity one would hardly recall that the constitutive
equation for the magnetization in the moving medium is

M = P × v (2)

in the first-order theory (Rosser 1964, Redžić 2002), and that, consequently, the corresponding
Maxwell equation for the curl of B is

∇ × B = µ0J + µ0∇ × M , (3)

where J = �v + Jc is the total, convection plus conduction, current density.
True, for a rigid isolated axisymmetric conductor that rotates uniformly in a net magnetic

field (applied plus that induced by convection currents) that is symmetrical about the axis of
rotation, the magnetization M vanishes since E + v × B vanishes. This follows from Ohm’s
law in differential form, Jc = σ(E + v × B), and from the fact that the conduction current
vanishes under steady-state conditions, as Lorrain (1990) and Bringuier (2003) have pointed
out. (Note that the vanishing of E + v × B is obtained in the framework of the corresponding
relativistic theory by neglecting the inertia of the conduction electrons (compare Grøn and
Vøyenly (1982) and Redžić (2002)).)
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However, if the rotating conductor is not isolated, i.e. if flow of current is possible into or
out of it, the magnetization in the conductor does not vanish and is given by

M = ε0(εr − 1)

σ
Jc × v. (4)

In the model discussed by Lorrain (1990) of the Faraday disc connected to a stationary circuit
through sliding contacts, the curl of M vanishes. Nevertheless, in the view of the present
author, in the general case the magnetization in moving non-magnetic conductors should not
be ignored when considering electrostatic charges in v × B fields.

The neglect of special relativity leads to a wrong solution (wrong if special relativity is
correct) to a simple electrodynamical problem even in the zero-velocity limit, in conflict with
intuition, as discussed elsewhere (Bartocci and Mamone Capria 1991a, 1991b, Rosser 1993,
Redžić 1993). In addition, nowadays it seems to be conclusively demonstrated that special
relativity is indispensable in the analysis of magnetic dielectrics that move at low velocities in
magnetic fields (cf a recent version using a modern magnetic material (Hertzberg et al 2001)
of the Wilson–Wilson experiment).

Another point in Bringuier’s paper (2003) is perhaps worth noting. The author discussed,
inter alia, the case of a thin circular non-magnetic conducting loop of wire of uniform circular
cross-section, rotating around a diameter in a static uniform magnetic field perpendicular to
that diameter. Unfortunately, his analysis of fields and charges in the classic physical system
is presumably wrong for the following reasons.

First, Bringuier argues that the bulk equation div (−ε0(v × B)) = �, where � is the
density of free charge, implies what he calls the continuity condition given by his equation (16).
However, that argument contains a pitfall: the bulk equation, while mathematically correct, has
no physical meaning outside the wire. The correct boundary condition involving the surface
free-charge density is that required by divD = �. (Compare Sommerfeld’s solution (1952) to
the problem of a long conducting bar moving along its axis in a uniform static magnetic field
perpendicular to the axis.)

Second, there is an omission in Bringuier’s expression for the uniform transverse field
in an infinite cylinder due to a surface charge distribution over the cylinder; a factor of two
is missing. After this omission is corrected, it is clear that his conclusion that ‘. . .E exactly
cancels the radial component. . . of v × B’ is wrong.

Third, but most important, in the configuration that was analysed by the author (the ring is
rotating around a diameter, in a uniform static magnetic field perpendicular to that diameter),
even a uniformly rotating ring does not give rise to a stationary situation. Recall that steady-state
situations discussed by Lorrain (1990, 2001) and Redžić (2001, 2002) are possible when an
axisymmetric and rotationally invariant conductor rotates uniformly in an axisymmetric time-
independent magnetic field; the rotation axis and the field and the conductor symmetry axes
should coincide, of course. (Obviously, a steady-state situation with a rotating toric wire would
be possible only if the wire rotated uniformly around the axis of symmetry perpendicular to the
equatorial plane of the wire (Sommerfeld 1952).) Clearly, the thin toric wire rotating around
a diameter, discussed by Bringuier, is not a rotationally invariant system. In addition, the wire
is the seat and the carrier of time-varying conduction and convection currents. The currents
give rise to time-varying induced electric and magnetic fields, and the curl of the electric field
is given by the differential form of Faraday’s induction law. As can be seen, neglecting the
induced electric and magnetic fields, as the author did, we neglect the self-inductance of the
wire, a rather rough approximation. Moreover, a more detailed analysis reveals that Bringuier’s
equation (7) does not apply to the rotating ring discussed in his section 5.
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